

Switch Fabric Basics

References

- Light Reading Report on Switch Fabrics, available online at: http://www.lightreading.com/document.asp?doc_id=25989
- Title: Network Processors Architectures, Protocols, and Platforms Author: Panos C. Lekkas Publisher: McGraw-Hill
- Multi-Gigabit Serdes: The Cornerstome of High Speed Serial Interconnects, Genesys Logic America, Inc.
- C. Minkenberg, R. P. Luijten, F. Abel, W. Denzel, M. Gusat, Current issues in packet switch design, ACM SIGCOMM Computer Communication Review, Volume 33, Issue 1 (January 2003)

Output Queued Switches

SHIVERSUTE SHIVERSUTE IN ARYLAND

- Every line card can immediately send the arrived data to the egress line card.
- All buffering (queueing) is done at the output side.
- Each line card do the scheduling of its out going data locally and independent of other line cards.
- Scheduling is a many-to-one selection problem.
- We can use well known and studied scheduling algorithms.

What is the problem with output queued architecture

- The interface between the line cards should run N times faster than the line cards.
 - □ The interface could be a bus that works N times faster
 - Alternatively we can have a full mesh connection between the line cards.
 - □ Neither approach is scalable.
- The output memory should work N+1 time faster than the line card
 - N line cards write into the memory
 1 read from the memory.
 - \Box It is not scalable.

Switch Based Architectures

- There is an intelligent switching element that transfer cells from input side to the output side.
- The interface does not need to work N times faster.
- We may need buffering at both input and output side.
- We usually have an extra switch interface unit element on the line card.
- We need multiple levels of scheduling and buffering
 Ingress line card
 Egress line card
 Switching element

Line Card and Switch Cards

Source: http://www.lightreading.com/document.asp?doc_id=25989

Multiple Switch Chips and Cards

- Consider that we need to have 4 serdes connection from each line card to get desired data rate.
- This means that we need 4 switching elements.
- If we can put 2 switching elements per switch card, then we need 2 switch cards.
- How many traces over the backplane?
- What if we have 2 more line cards?

ENTS689L: Packet Processing and Switching

Switch Fabric Basics

Speedup

- > Speedup = R_{SF}/R_{TM}
- In the commercial systems, speedup usually refers to R_{SF}/R_L.
- Higher speedup factor:
 - Increases system design complexity.
 - Increases power consumption.
 - Creates signal integrity issues.
- Required Speedup factor is around 2

ENTS689L: Packet Processing and Switching Switch Fabric Basics 12

Redundancy

- We have spare switch cards and control cards in the system.
- > The redundancy models:
 - Passive redundancy (N:1) We have one inactive switch card in the system that starts to work after failure.
 - Passive redundancy (1:1, N:N) for each active switch card, we have one inactive card.
 - Load-Sharing Redundancy (N-1) all cards are active and when a failure happens and the performance will degrade gracefully.
 - Active Redundancy (1+1): Two sets of fabrics carrying the same traffic.

Source: www.idt.com/content/switchblock.jpg

- > Note that redundancy must be switch card based.
- If we need two switch cards and 4 switch elements for normal operation.
- In N+1 redundancy model we need 3 switch cards and 6 switching elements.

Byte Slice Parallelism

- In the byte slice parallelism switching elements carry different segments of the same cell in parallel.
- All switching elements should work synchronously.

Cell Slice Parallelism

Cell vs. Byte Slice

- Can we have N-1 Redundancy with byte slice?
- > Which architecture have more time for scheduling?
- Which architecture needs cell reordering at the egress side?
- How can we do load balancing in the cell slice model?
- Do we need load balancing in byte slice model?
- Which architecture requires coordination and synchronization among switch cards?
- If there is a failure in one switching element how many cells we loose in
 Cell slice model?
 - □ Byte slice model?

Switch Fabric Requirements

- Support for QoS
 - Throughput
 - Delay
 - Jitter
- Support for multicast and broadcast
- Support for TDM traffic
 - Dynamically adjust the capacity mix in small increments
 - □ Low and very strict delay
 - ITU standard restrict delay to less than 150ms and OEMs want less than 10us delay through the switch fabric.

High reliability

- Graceful degradation: Failure reduces throughout but not the switching capability.
- □ Lossless controlled switchover to redundant path.
- Continuous monitoring of the data path integrity
- Backward compatibility
 - □ The interface between line-card and switch-card should be the same.
- Space: Fabric chip must fit in the switch cards (around 400 square inches)
- Power Dissipation of a fabric card can be around 250W.

Back Plane

- High-speed backplane connects line-cards and switch-cards.
- Back-plane consists of serial links providing point-to-point connection between the line-card and switch-cards.
- The back-plane carries
 - Packet Data
 - □ Flow-control messages
 - □ System management messages
 - Synchronizing clock signal
- > We can have limited number of traces on the backplane.
- We need to use high-speed serial links to achieve the required speed.

Why serial and not parallel backplane connections?

- ➢ We need to limit number of traces.
- Large buses operating at relatively higher frequencies over long interconnect PCB causes problems:
 - □ Signal noise (cross talk and reflection)
 - Power
- Serial connection results in:
 - □ Area reduction (fewer traces and connections)
 - □ Noise reduction by using differential signals.
 - Better migration path to higher speeds

Back-plane high-speed serial connection

- > This connection should pass through the Backplane.
- > Serdes (Serializer-Deserializer) is used for this connection.
 - Each Serdes signal run over two wires and two pins (differential mode signal).
 - □ The speed is usually around 3.125 Gbps.
 - □ They usually run some sort of coding (8b/10b encoding)
 - Adds two bit at the start and end of each byte to assist clock recovery and maintain a DC balance.
 - □ The actual data rate would be around 2.5 Gbps.
 - □ There are attempts to provide 5-10 Gbps serdes.
- Serial link drivers:
 - D PECL
 - LVDS (Low Voltage Differential Swing) 155Mbps-1.25Gbps
 - CML (Current Mode Logic) 600Mbps- 10Gbps

Serial Link Drivers

There are three main differential signaling technologies:
 PECL (Positive Emitter Coupled Logic)
 LVDS (Low Voltage Differential Swing) 155Mbps-1.25Gbps
 CML (Current Mode Logic) 600Mbps- 10Gbps

Parameter	LVDS	PECL (5V)	LVPECL (3.3V)	CML
TX VOH	1.425V	4.0V	2.3V	VCC
TX VOL	1.075V	3.2V	1.6V	VCC-0.8V
TX VOD	350mV	800mV	0.7V	800mV
TX VOS	1.25V	3.6V	1.95V	VCC-0.4V
TX RT	100 Ohm	50 Ohm	50 Ohm	50 Ohm
RX VTH	±100mV	±100-200mV	±100mV	±50mV
RX VIN	GND to 2.4V	Depends	Depends	Limited

'CML numbers are shown for an 800mV output example; 400mV is also common.

Source: http://www.national.com/nationaledge/may03/article.html

Serial Link Drivers

	ECL	LVDS	CML
Bus Structure	Point-to- Point, Multidrop, Multipoint	Point-to- Point, Multidrop, Multipoint*	Point-to-Point
Power Dissipation	high	low	med
Speed	DC to >10Gbps	DC to >2Gbps	DC to >10Gbps
Coupling	DC or AC	DC	DC or AC
Process	Bipolar	CMOS, BICMOS	Bipolar, CMCS

Source: http://www.national.com/nationaledge/may03/article.html

Back plane

- There is not enough space in one shelf for high speed in 19-21 inch shelves.
- Usually we can have 16 line cards, two switch card and one control card in one shelf.
- > In multi-shelf systems, shelves are connected using optical fiber.
- Back plane can be designed for synchronous or asynchronous operation.
- Synchronous operation distributes a central clock across the backplane.
- Asynchronous operation requires a precise clock generator on each card (100 ppm).
- > We can use idle cycles or cells to compensate for clock drifts.
- > We use FIFO buffers before data passes boards clock domains.
- FIFO buffers also compensate for variable distance between the line and switch cards (specially in multi-shelf systems).

How Many Traces do we need?

- Typical LVDS speed is 1.25 Gbps, for 2.5 Gbps we need 2 channels.
- LVDS is differential, so we need 2 traces per channel
- LVDS is unidirectional, so we need 2 channels for full duplex
- > Therefore, full duplex 2.5 Gbps, using LVDS requires 8 traces.
- > We have to take care of channel alignment too.
- For an OC-48 line-card with 1:1 redundancy and 2X speedup we need 2.5x4 = 10 Gbps data rate.
- ➤ This translates into 8x4=32 traces per line-card.
- ➢ For 16 OC-48 line cards we need 32x16 =512 traces.
- ➢ For 16 OC-192 line cards we need 2048 traces.

Serdes

Serdes Quality

- Jitter (affects the bit error rate)
 - □ PCI express with 400 ps bit time
 - Max. serialize output jitter 120 ps
 - Min. deserializer input jitter 240 ps
- Smaller size and lower power
 - Use same PLL for multiple SerDes cores
 - Distributing multi-gigahertz clock consumes a lot of power and causes signal integrity concerns.
- Testability
 - Serdes should have built-in self test (BIST) functions.
 - Serdes usually offer Pseudo Random Bit Sequence (PRBS) pattern generator in the serializer and pattern checker in deserializer.
 - □ Jitter injection filter

